Program Testing
Why do we test programs? A computer program is a (potentially) very complex logical creation. The computer will happily follow the instructions you give it, whether those instructions match what you actually want it to do or not. Computers are not smart enough to understand their programmers' intent - they can only follow the instructions you give, right or wrong. Since most computer programs are large, it's common for programmers to make mistakes somewhere in the process of creating a program.

How do we test programs? The most common way to test a program is simply to run the program and see whether its results match what you expect. This kind of testing can be useful, but it's not the only kind of test available. In particular, large programs are difficult to test by just running the program, because the program may contain many special cases that don't come up very often in normal use. An effective software designer anticipates and tests those special cases, designing specific tests to make sure that the program works even with unusual input.

While testing is a critical part of software design, keep in mind that testing alone cannot verify a program's correctness, because it's usually not possible to test every possible input to a program. However, a well-chosen set of tests can help diagnose and ultimately fix nearly all program errors, if the tests are complete and "exercise" code that is more likely to contain errors.
Testing-related vocabulary terms:
A test case is a specific set of input for a program or part of a program, along with the expected results of running the program with that input. Note that a test case must contain both the input and the output! A test can only help to verify a program's correctness if the expected output can be compared to the actual output of the test case.

An edge case is a test case whose input is near a "boundary" where the program changes from one behavior to another. For example, if a game allows a character to hold four items at a time, then edge cases would include collecting the fourth item (the last item that the character can hold) and collecting the fifth item (an item that would exceed the character's carrying capacity).
An error case is a test case whose expected result is an error. For example, for a program that divides two numbers, dividing by zero is an error case. A well-written program should have a plan in place to handle unexpected data in a reasonable manner; error cases test this plan.
A test suite is a collection of test cases that is intended to fully "exercise" a section of a program. A complete test suite should include edge cases and error cases as well as a representative selection of "normal" cases.

In test-driven development, the software designer creates test cases for a section of code first, before writing the program itself. While this seems "backwards" to many programmers, writing tests first helps the programmer to focus on what the code should do. By considering expected results in advance, most programmers write better code with fewer errors.
© 2012 Board of Regents University of Nebraska

