RET Lesson:

Does it Work? Program Testing
==========================Lesson Header ==========================

[image: image1.png]

Lesson Title: Does it work? Program Testing

Draft Date: July 11, 2012
1st Author (Writer): Ryan Stejskal

Instructional Component Used: Program Testing

Grade Level: High School

Content (what is taught):

· Selecting a set of test cases for a section of program code

· Analyzing program code for defects based on the results of test cases

· Evaluating test case sets for completeness and code coverage

Context (how it is taught):

· Students first write code and have it tested automatically online
· Then they write their own test cases for existing code
Activity Description:

In this lesson, students practice creating test cases for computer programs or sections of programs written in the Java language. Students start by exploring existing examples of program testing using the CodingBat web site, which contains a series of problems that challenge students to solve with Java, and uses predetermined test cases to check solutions. After seeing the test sets that CodingBat uses to check programs, students practice writing test cases for each others' code (working in pairs or small groups), and then write test cases for a program before writing the program itself.

Standards:

Math: A3, E1

Science: A1, A2
Technology: D3, F3

Engineering: A1, A2
Computer Science: CT:L3:MW2, CCP:L3:MW3

Materials List:

· Computers (with Internet access)

· Java programming environment

Asking Questions: (Does it Work? Program Testing)

Summary: Students use the CodingBat web site to explore examples of test cases.
Outline:

· Students visit the CodingBat web site (http://codingbat.com)

· Students write Java code and use CodingBat to test their code

· As students submit solutions to the problems on CodingBat, the web site will automatically run their code against a series of test cases

Activity: Ask students to visit the CodingBat web site (http://codingbat.com). Students should try writing solutions to one or more of the Java problems on the site; you may wish to pre-select specific problem(s) for the students to solve, depending on their Java experience. As students work with problems on the site, ask these questions:

	Questions
	Answers

	How does the CodingBat web site determine whether submitted code is correct?
	It runs the code several times, with different input values, and checks the output.

	Is the submitted code correct or incorrect if some but not all tests run correctly?
	It's incorrect. Even one incorrect test case demonstrates a problem in the code.

	If all tests run correctly, is the submitted code correct?
	Probably. It's possible for code to pass all tests and still be correct, but if the tests are chosen well, this is unlikely.

	How do you think the creators of the web site decide what cases to test?
	???

Resources:

· CodingBat web site: http://codingbat.com
Exploring Concepts: (Does it Work? Program Testing)

Summary: Students investigate test case creation by writing Java functions, and then writing test cases and testing other students' functions.

Outline:

· Divide students into pairs or small groups. Within each group, some students should be designated in group "A" and others in group "B"

· Group A students write a Java function to solve problem A, and create a list of test cases to check solutions to problem B. Group B students do the reverse.
· Students exchange code, and use their test cases to test each other's functions
· Discuss what test cases should be included for each of the two problems
Activity: In this activity, students work in pairs or small groups to create Java functions and test cases. Start by dividing students into "A" and "B" groups. Each group can be a single student or a small team, and each A group should be paired with a B group. Each group will write a Java function for one problem, and a set of test cases for a different problem. The A groups should write Java function A and test cases for function B, and the B groups should do the reverse.

After students have had sufficient time to create their functions and test cases, the A and B groups join together and test both functions, using the test cases the two groups created.

When the small groups have completed testing, bring the class together to discuss the results of their programming and testing. As a class, create a list of test cases for each function (A and B), and discuss how many and which test cases should be included in the set.

To provide formative assessment as students work, ask yourself or the students these questions:

1) Did students write enough test cases to cover the range of possible input to the functions?

2) Did students account for edge cases and error cases, if appropriate? (In the attached problems, edge cases include, for example, weapons of weight 15 or 16 for red mages. Error cases include character classes, spells, or weapons that are not on the list of valid inputs, as well as spell levels/weapon weights outside the specified range.)

3) Do student test cases include both input values and expected results?

Attachment:
· T071_RET_Does_It_Work_Program_Testing_E_Two_Problems.doc

[image: image2.png]

Instructing Concepts: (Does it Work? Program Testing)

Program Testing

Why do we test programs? A computer program is a (potentially) very complex logical creation. The computer will happily follow the instructions you give it, whether those instructions match what you actually want it to do or not. Computers are not smart enough to understand their programmers' intent - they can only follow the instructions you give, right or wrong. Since most computer programs are large, it's common for programmers to make mistakes somewhere in the process of creating a program.

How do we test programs? The most common way to test a program is simply to run the program and see whether its results match what you expect. This kind of testing can be useful, but it's not the only kind of test available. In particular, large programs are difficult to test by just running the program, because the program may contain many special cases that don't come up very often in normal use. An effective software designer anticipates and tests those special cases, designing specific tests to make sure that the program works even with unusual input.

While testing is a critical part of software design, keep in mind that testing alone cannot verify a program's correctness, because it's usually not possible to test every possible input to a program. However, a well-chosen set of tests can help diagnose and ultimately fix nearly all program errors, if the tests are complete and "exercise" code that is more likely to contain errors.
Testing-Related Vocabulary Terms:
A test case is a specific set of input for a program or part of a program, along with the expected results of running the program with that input. Note that a test case must contain both the input and the output! A test can only help to verify a program's correctness if the expected output can be compared to the actual output of the test case.

An edge case is a test case whose input is near a "boundary" where the program changes from one behavior to another. For example, if a game allows a character to hold four items at a time, then edge cases would include collecting the fourth item (the last item that the character can hold) and collecting the fifth item (an item that would exceed the character's carrying capacity).
An error case is a test case whose expected result is an error. For example, for a program that divides two numbers, dividing by zero is an error case. A well-written program should have a plan in place to handle unexpected data in a reasonable manner; error cases test this plan.
A test suite is a collection of test cases that is intended to fully "exercise" a section of a program. A complete test suite should include edge cases and error cases as well as a representative selection of "normal" cases.

In test-driven development, the software designer creates test cases for a section of code first, before writing the program itself. While this seems "backwards" to many programmers, writing tests first helps the programmer to focus on what the code should do. By considering expected results in advance, most programmers write better code with fewer errors.
Organizing Learning: (Does it Work? Program Testing)

Summary: Students will create their own test cases for a problem statement, and then use their test cases to decide whether either or both of two Java functions correctly solve the problem.

Outline:

· Discuss the problem statement and its requirements

· Fill in input, expected output, and test case type columns of the test case chart

· Test both functions and record actual output

· Determine which function (if either) correctly implements the problem statement

Activity: Students begin by reading the problem statement (see attachment) and discussing the requirements of the statement. Once students understand the problem and its requirements, they should create a set of test cases that will determine whether a Java function correctly implements the requirements of the problem. Students should note whether each test case is a normal case, an edge case, or an error case; remind students that a complete test suite should include all of these types whenever appropriate. After students have created their test cases, they should use those cases to test Java functions I, II, and III (also in attached file). Discuss whether the functions correctly implement the requirements. Students should consider the following questions in the discussion:

· If a function does not fulfill the requirements, what test case(s) show the problem?

· How can the function be modified to fulfill the requirements?

Resources:

Student test case organization chart:
	Test case
	Type
	Function I
	Function II
	Function III

	Input
	Expected Output
	(Normal, edge, error)
	Actual Output
	Passes test?
	Actual Output
	Passes test?
	Actual Output
	Passes test?

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Attachment:

· T071_RET_Does_It_Work_Program_Testing _O_Three_Implementations.doc

[image: image3.png]ublic static int round(int n)

i

nt noLastdigit = n / 10;
int TastDigit = n % 10
F (Tastigit < 5)

return nolastigit * 10;
else

return nolastigit * 10 + 1

Understanding Learning: (Does it Work? Program Testing)

Summary: Students create their own suite of test cases to verify the correctness of a Java function.

Outline:

· Formative Assessment of Program Testing

· Summative Assessment of Program Testing

Activity: Students will complete written and performance assessments of program testing.

Formative Assessment: As students are engaged in the lesson ask these or similar questions:

1) Given a set of test cases, can the students describe whether the set is adequate to cover the code to be tested, and if not, identify missing tests?

2) Are the students able to create a set of test cases that adequately cover the requirements for a problem description?

3) Can the students explain why each test case is included in a set of tests?

Summative Assessment: Students can answer the following writing prompt.
Explain why tests for a section of a program should include "normal" cases, edge cases, and error cases.

Students can complete the following performance assessment.
Create a normal test case, an edge case, and an error case for each of the following function descriptions:

· The sqrt(double x) function (which computes the square root of its input value x).
· A getBrightestComponent(int r, int g, int b) function. This function takes in the red, green, and blue components of a color (each of which must range from 0 to 255 inclusive), and returns the brightest (highest value) among the three inputs.

�

�

�

© 2012 Board of Regents University of Nebraska

